skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sparks, David"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Fish in the wild often contend with complex flows that are produced by natural and artificial structures. Research into fish interactions with turbulence often investigates metrics such as turbulent kinetic energy (TKE) or fish positional location, with less focus on the specific interactions between vortex organization and body swimming kinematics. Here, we compared the swimming kinematics of rainbow trout (Oncorhynchus mykiss) holding station in flows produced by two different 3×5 cylinder arrays. We systematically utilized computational fluid dynamics to identify one array that produced a Kármán vortex street with high vortex periodicity (KVS array) and another that produced low periodicity, similar to a parallel vortex street (PVS array), both validated with particle image velocimetry. The only difference in swimming kinematics between cylinder arrays was an increased tail beat amplitude in the KVS array. In both cylinder arrays, the tail beat frequency decreased and snout amplitude increased compared with the freestream. The center of mass amplitude was greater in the PVS array than in only the freestream, however, suggesting some buffeting of the body by the fluid. Notably, we did not observe Kármán gaiting in the KVS array as in previous studies. We hypothesize that this is because (1) vorticity was dissipated in the region where fish held station or (2) vortices were in-line rather than staggered. These results are the first to quantify the kinematics and behavior of fishes swimming in the wake of multiple cylinder arrays, which has important implications for biomechanics, fluid dynamics and fisheries management. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Predator–prey interactions are fundamental to ecological and evolutionary dynamics. Yet, predicting the outcome of such interactions—whether predators intercept prey or fail to do so—remains a challenge. An emerging hypothesis holds that interception trajectories of diverse predator species can be described by simple feedback control laws that map sensory inputs to motor outputs. This form of feedback control is widely used in engineered systems but suffers from degraded performance in the presence of processing delays such as those found in biological brains. We tested whether delay-uncompensated feedback control could explain predator pursuit manoeuvres using a novel experimental system to present hunting fish with virtual targets that manoeuvred in ways that push the limits of this type of control. We found that predator behaviour cannot be explained by delay-uncompensated feedback control, but is instead consistent with a pursuit algorithm that combines short-term forecasting of self-motion and prey motion with feedback control. This model predicts both predator interception trajectories and whether predators capture or fail to capture prey on a trial-by-trial basis. Our results demonstrate how animals can combine short-term forecasting with feedback control to generate robust flexible behaviours in the face of significant processing delays. 
    more » « less